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Abstract

The estimation of vegetation water content (VWC) over a crop-growing period was performed using the near-infrared (NIR) and short-

wave infrared (SWIR) bands of the Terra-MODerate Resolution Imaging Spectroradiometer (Terra-MODIS). The study was conducted in

Iowa, USA as part of the Soil Moisture Experiments 2002 (SMEX02). Due to the moderate resolution of MODIS data, the removal of mixed

pixels was important in order to meet accuracy estimation requirements of potential applications. MODIS-derived reflectance for the NIR and

SWIR bands over corn and soybeans fields was validated using atmospherically corrected Landsat Thematic Mapper (TM)/Enhanced

Thematic Mapper (ETM) data. All possible combinations of the 7 MODIS bands were used to construct VIs. The performance of each

combination was evaluated by computing their correlations with corn VWC. The Normalized Difference Vegetation Index (NDVI) and the

Normalized Difference Water Index (NDWI) were found to be the best candidates. In this study, it was observed that the MODIS SWIR-

based VI for corn saturated at a later date than NDVI. A similar late saturation was observed for soybeans with a lag of about 10 days. Linear

relationships between the SWIR-based VI and VWC were developed using the MODIS data and ground measured VWC. MODIS-derived

Normalized Difference Water Indices (NDWI) using SWIR (1640 nm) or SWIR (2130 nm), namely NDWI1640 or NDWI2130, all showed

potential in estimating VWC. Additional testing of this approach could result in a robust technique for estimating VWC for specific crops.
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1. Introduction

For three decades the Normalized Difference Vegetation

Index (NDVI) has been used to estimate vegetation water

content (VWC) with limited success. The limitation is

related to its saturation when vegetation coverage is dense.

For example, the saturation of NDVI at high leaf area index

(LAI) was reported in Gamon et al. (1995) and Chen and

Brutsaert (1998). NDVI is based on the red (RED) and near-

infrared (NIR) bands, which are located in the strong

chlorophyll absorption region and high reflectance plateau

of vegetation canopies respectively. Therefore, NDVI

represents chlorophyll rather than water content (Gamon

et al., 1995; Gao, 1996).

A potentially better way of estimating VWC is to use

indices based on the longer wavelength reflective infrared
ent 98 (2005) 225 – 236
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range (1240–3000 nm), for example, the short-wave infra-

red (SWIR) reflectance (1300–2500 nm). Using satellite

spectrometers and the Airborne Visible/Infrared Imaging

Spectrometer (AVIRIS) data, it has been found that

vegetation indices (VI) based upon NIR and SWIR are

better than those employing VIS and NIR when retrieving

leaf water content information (Ceccato et al., 2001; Gao,

1996; Gao & Goetz, 1995; Hunt & Rock, 1989; Hunt &

Running, 1990; Rollin & Milton, 1998; Serrano et al., 2000;

Sims & Gamon, 2002; Ustin et al., 1997). The advantage of

using SWIR data was also demonstrated in modeling studies

(Ceccato et al., 2001; Fourty & Baret, 1997; Tucker, 1980;

Ustin et al., 1997; Zarco-Tejada et al., 2003). Studies using

operational satellites also provided evidence on the benefits

of the SWIR bands (Ceccato et al., 2002b; Chen et al., 2003;

Jackson et al., 2004). Compared to NDVI, it has been found

that saturation of SWIR-based spectral index occurs later

(Roberts et al., 1997). To date, the MODIS SWIR bands

have not been fully evaluated for the estimation of VWC.

Although it has a higher spatial resolution than MODIS,

the utilization of Landsat TM/ETM (referred to as Landsat

hereafter) in VWC mapping is limited by its infrequent

temporal coverage and cost. In contrast, MODIS data is free

and available daily (every other day at the equator) with

moderate resolution and narrower reflected bandwidth

ranges. The resolution of MODIS is at 250 m for bands

1–2 (centered at 648 and 858 nm) and 500 m for bands 3–7

(centered at 470, 555, 1240, 1640, and 2130 nm).

A vegetation index that may provide VWC information is

typically a simple ratio utilizing data from two wavelengths:

a reference wavelength where the water absorption coef-

ficient is low and a measurement wavelength where water

absorption is moderate or high and the penetration depth

into the canopy is maximized (Gao, 1996).

The NIR (858 nm) band has been identified as a good

choice for reference band in previous studies (Bull, 1991;

Gao, 1996; Sims & Gamon, 2002; Penuelas et al., 1993;

Roberts et al., 1997). It is suitable for normalization because

it is relatively insensitive to vegetation water content changes

in comparison with the longer wavelengths of NIR and SWIR

bands as well as its relatively better canopy penetration

ability in relation to visible bands. In order to establish

physically meaningful vegetation index for VWC estimation,

the SWIR bands with strong water absorption features were

used in this study. The penetration of the bands into the

canopy can be shown in the soil effect from soil background

interaction, especially when there are sparsely vegetative

conditions. Additionally, the sensitivity study conducted by

Ceccato et al. (2002a) showed that more than 50% of the

changes in the SWIR bands are due to the absorption caused

by leaf equivalent water thickness (EWT). Pu et al. (2003)

also demonstrated the increase of the reflectance at SWIR

bands which are the main feature in water absorption bands.

In other studies using Landsat data, such as Chen et al.

(2003) and Jackson et al. (2004), the SWIR (1550–1750

nm) was used, which was supported from the work of
Tucker (1980). The SWIR (1640, 2130 nm) bands are water

absorption dominated and as a result they are sensitive to

VWC variations. In the current investigation the perform-

ance of vegetation indices based upon various band

combinations in estimating VWC is examined.

Based on the discussions above, a set of NDWI functions

using the NIR and the SWIR bands is evaluated in this study

for VWC estimation:

NDWI1640 ¼ NIR858 nm � SWIR1640 nmð Þ
= NIR858 nm þ SWIR1640 nmð Þ ð1Þ

NDWI2130 ¼ NIR858 nm � SWIR2130 nmð Þ
= NIR858 nm þ SWIR2130 nmð Þ ð2Þ

In addition, for comparison purposes, a NDVI is also

utilized:

NDVI ¼ NIR858 nm � RED648 nmð Þ
= NIR858 nm þ RED648 nmð Þ: ð3Þ

Based upon previous studies and theoretical consider-

ations, the indices described above have been expected to be

the primary candidates for use in VWC estimation.

However, to avoid overlooking other possible indices, a

full range of potential band combinations will be evaluated

before focusing on a few candidates.

In order to develop relationships between MODIS-based

VIs and VWC and to assess the performance of these in

estimation, VWC data obtained by ground sampling during

SMEX02 (Anderson et al., 2004; Chen et al., 2003; Jackson

et al., 2004) and Landsat data are utilized. The corn and

soybeans fields within the SMEX02 site are typically 800 m

in length. Therefore, the coarse spatial resolution of MODIS

can result in the observation of mixed pixels consisting of

corn and soybeans fields or different management practices

of the same crop. As a result it was necessary to develop a

procedure to identify and remove mixed pixels from

analyses. Comparisons between MODIS- and Landsat-

derived results are conducted at both the field level and

regional level. Temporal variations of reflectance and VIs

are examined. The relationships between MODIS-derived

NDWIs and ground measured VWC are established and

evaluated.
2. Data sources and processing

2.1. Data sources

The Walnut Creek watershed (WC) is located just south

of Ames, Iowa, USA. It was the focus of SMEX02, which

took place from mid-June to mid-July 2002. Within the WC

shown in Fig. 1, corn and soybeans occupied 73.4% of the

total area (39.5% in corn and 33.9% in soybeans), with an

additional 12% in urban and roads, 14% in grasses and



Fig. 1. False-color-composite image of the Walnut Creek watershed during SMEX02 on July 1, 2002 (36.0�15.9 km): (a) Landsat TM/ETM (30 m, 4-3-5); (b)

MODIS (250 m, 2-1-1).
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trees, 0.6% in trace pixels of other classes (Doraiswamy et

al., 2004).

Significant changes occurred in the grass and forest

classes in May 2002. In early June, corn was still in its early

stages of growth and most soybeans fields were essentially

bare soil. By the end of June, corn vegetation water content

had reached a range between 3 and 4 kg/m2, while soybeans

had values less than 1 kg/m2. The corn tasseling growth

stage began during the first week of July. Soybeans got their

first pod at the same time. Soybeans fully bloomed after the

second week of July. According to ground based VWC

measurements, the VWC of soybeans was nominally 1.5 kg/

m2 and was up to 6.0 kg/m2 (Anderson et al., 2004; Chen et

al., 2003; Jackson et al., 2004). VWC values used in this

study are total VWC including both leaf water content and

stem water content.

VWC sampling data were available for 31 WC sites: 21

corn fields and 10 soybean fields. Details of the sampling

method can be found in Anderson et al. (2004). The

sampling time frame encompassed the period from emer-

gence to tasseling/full bloom for corn/soybeans. Sampling

locations were selected in advance using photography so

that soil and canopy conditions would be homogeneous in

the surrounding area on scales of tens of meters, and also
where the vegetation appeared healthy and capable of

surviving through the experiment (Anderson et al., 2004).

The temporal pattern of VWC for individual corn and

soybeans fields during SMEX02 is presented in Anderson et

al. (2004). Sampling results showed that VWC increased

continuously over the entire period as expected. Some sites

were sampled twice but most only once during SMEX02.

The SMEX02 study area in Iowa was located on both

path 26 and 27 of row 31 of Landsat data. Over the

SMEX02 period of primary interest, there were good quality

images available on five days: June 7, June 23, July 1, July

8, and July 17. All of these were Landsat 7 except June 23,

which was Landsat 5. The image data sets were atmospheri-

cally corrected using Second Simulation of the Satellite

Signal in the Solar Spectrum model (6S) (Vermote et al.,

1997). Further validation of the reflectance corrections was

achieved by means of comparison with ground based

spectrometer measurements (Chen et al., 2003; Jackson et

al., 2004). This high spatial resolution data set was very

useful in the present study of MODIS data.

The Terra-MODIS Surface Reflectance Product

(MOD09) data were obtained directly from the Land

Processes Distributed Active Archive Center of United

States Geological Survey (USGS) (http://edcimswww.

http://edcimswww.cr.usgs.gov/pub/imswelcome/
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cr.usgs.gov/pub/imswelcome/). This product is computed

from the MODIS Level 1B data that has been radiometri-

cally corrected, geo-located and sensor SWIR bands

electrical crosstalk corrected (Xiong et al., 2004). The

product provides an estimate of the surface spectral

reflectance for each band, as it would have been measured

at ground level if there were no atmospheric scattering or

absorption. The algorithm generating this product is based

on input from other bands and products and corrects for the

effect of atmospheric gases, aerosol, and thin cirrus clouds

(Vermote & Vermeulen, 1999). Version 4 of Terra-MODIS

surface reflectance (MOD09), which is validated and

atmospherically corrected with the best data quality to date,

was downloaded and utilized in this study. MODIS data in

HDF format downloaded with SIN projection were then re-

projected to GeoTIFF files with UTM projection using the

MODIS Reprojection Tool (MRT). QA flags of MODIS

data, which tell the quality level of the images by use of

digital indicators in checking cloud status of the study area

with the ability to identify if atmospheric corrections are

performed or not, were examined using the MODIS Land

Data Operational Product Evaluation (LDOPE) software.

Both MRT and LDOPE can be obtained from the USGS

website (http://edcdaac.usgs.gov/tools/modis/).
Fig. 2. Classification maps of the Walnut Creek watershed. (a) Supervised Lands

MODIS (250 m, July 1, 2002).
2.2. Data processing

The spatial variation scales of the MODIS data in the

SMEX02 region were examined using semi-variograms

(Chen & Brutsaert, 1998). The range of the semi-vario-

grams retrieved was around 1500 m. This parameter

represents the repeatability of spatial patterns on the image

relevant to the typical size of a single corn or soybeans field

(See Fig. 2a). Given the study area where corn and soybean

are evenly distributed next to each other in most areas, the

range becomes approximately twice the typical crop field

size (¨800 m). Results indicated that the change in the

reflectance of a single crop field could be detected by the

MODIS data at 250 and 500 m, at least to distinguish the

boundaries with mixed crops coverage and the centers of

the crop fields. This has been confirmed by visual

observations of the crop fields in MODIS images. Thus, it

was decided that the MODIS bands 1–7 at 250 and 500 m

could be used to identify individual fields. Each sampled

field included 10–20 MODIS pixels (See Fig. 2b).

Cloud and shadow pixels were identified using QA flags.

The MODIS image on June 6 was used to identify forest/

grasses areas since the forest/grasses areas had unique

spectral reflectance in early June. The NDVI map developed
at TM/ETM based on field survey (30 m, July 1, 2002); (b) Unsupervised

http://edcdaac.usgs.gov/tools/modis/


Fig. 3. Corn percentage map (MODIS 250 m) (The darker the color, the higher the corn percentage).
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Fig. 4. Comparisons of MODIS-derived NDWI1640 NDWI2130 for corn

before and after geolocation correction and the removal of mixed pixels.
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for July 31 was used to identify urban/roads because the

NDVI of urban areas and roads were significantly lower

than other classes at this time due to canopy cover. The

unsupervised MODIS classification map for July 1 is shown

as Fig. 2b and can be compared to the 30 m resolution

Landsat-based classification map in Fig. 2a. The 30 m land

cover classification was performed using a supervised

procedure in which training site visits and map digitization

are also used (Doraiswamy et al., 2004). As a consistency

check, the higher resolution map (Fig. 2a) was resampled to

a 250 m resolution and compared to the MODIS product

(Fig. 2b). The comparison revealed that 80% of the crop

pixels were correctly classified. Considering that an

unsupervised procedure was used to classify the MODIS

data and that it has a spatial resolution of 250 m, this level of

performance is acceptable.

Since one MODIS 250 m pixel covers approximately

sixty Landsat 30 m pixels, it is quite possible that MODIS

pixels at the edge of a field may include portions of an

adjacent field. These could have the same crop or a different

crop and/or management practice. Such pixels are defined as

mixed pixels. For analyses involving ground and satellite

data comparisons, it is essential that these pixels are not

used. According to QA flag interpretation, the adjacency

effect that accounts for the interchange of radiance between

adjacent pixels in heterogeneous landscape due to the sensor

point spread function (PSF) (Huang et al., 2002; Qiu et al.,

2000) has not been corrected to date in the MOD09 products

(Vermote et al., 2002). However, this effect is less

significant for medium or low spatial resolution sensor such

as MODIS (Huang et al., 2002; Ouaidrari & Vermote,

1999).

Identifying mixed pixels requires the precise matching of

the MODIS and Landsat imagery. Therefore, additional

verification of geolocation accuracy was performed. Corre-

lations of the spatial patterns between a Landsat image (Fig.

1a) and an equivalent MODIS Fwindow_ (resampled to 30

m) were calculated over a dozen of areas in the image to

find an optimal shift, which was 3-pixels (90 m) west and 1-

pixel (30 m) south.
Based on this precise geolocation analysis, a Fpercentage
mapping_ approach was used to identify mixed pixels and

exclude them from VI calculations. Knowing the percentage

of the Landsat corn/soybeans pixels in each corresponding

MODIS pixel, percentage maps of corn and soybeans were

generated. The corn percentage map is shown in Fig. 3.

Only those MODIS pixels with a corn percentage >90%

were identified as Fpure_ corn, which was 50.3% of all

pixels identified as corn in Fig. 2b. As shown in Fig. 3, the

pure pixels were concentrated in the central area of each

crop field. Only the pure corn/soybeans pixels were used in

further calculations.

Fig. 4 illustrates the improvements that can be achieved

in estimating corn NDWI using the approach described

above to solve the mixed pixel problem. In general, the

processed NDWI data show the saturation phenomena more

clearly. The overall increase in the level of the curves is the

result of eliminating soybean field contributions that have

relatively higher reflectance in the SWIR (1640 nm) band

used in VI computations (see Fig. 6). The net effects of the

geolocation correction and the removal of mixed pixels are



Table 1

R2 (coefficient of determination) values for different MODIS bands combination of vegetation indices in corn/soybeans VWC estimation linear regressions (R2

for corn are in bold and shaded; R2 for soybeans are in italic and not shaded)

MODIS
bands

VIS NIR SWIR

Wavelength 470 nm 555 nm 648 nm 858 nm 1240 nm  1640 nm 2130 nm 

470 nm – 0.43 0.014 0.65 0.61 0.48 0.21 
555 nm 0.24 – 0.56 0.73 0.69 0.047 0.38 

VIS 

648 nm 0.41 – 0.78 0.69 0.41 0.054 
858 nm 0.23 0.33 0.46 – 0.68 0.74 0.72 NIR

1240 nm 0.20 0.22 0.51 0.49 – 0.54 0.54 
1640 nm 0.03 0.20 0.21 0.20 0.60 – 0.52 SWIR

 2130 nm 0.28 0.58 0.28 0.54 0.56 0.54 – 

0.0036
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evident in the correlation (R2) between the bands/VIs and

VWC in Tables 1 and 2. R2 values were higher (0.57 versus

0.32) for the MODIS NIR (858 nm) after adjustment, since

the NIR (858 nm) has distinctly different responses for corn

and soybeans. The R2 values for the NIR (1240 nm) and the

SWIR (1640 nm and 2130 nm) relationships were not

sensitive to the corrections because in these bands the

reflectance values of corn and soybeans are similar.

It is worth noting that, when the typical size of the crop

fields (¨800 m) is compared to the MODIS resolution (250

or 500 m), any further geolocation correction (90 and 30 m)

might not have a large impact on the final results. This is

consistent with the statements about the effectiveness of

geolocation correction in MODIS L1B products (Barbieri,

1997). Therefore, it was concluded that the removal of

mixed pixels was more important than geolocation in

reducing error.

For real applications without fully processed Landsat

images as references, alternative ways need to be explored

to solve the mixed pixel problem. If a classification map is

accessible, the procedures described above can be adopted.
3. Results

MODIS- and Landsat-derived surface reflectance data

were compared at both the field-averaged level and

regional-averaged level to examine the difference between

the two satellites as well as the difference between crop
Table 2

Summary of linear regression statistics for estimating VWC from vegetation indic

A: intercept; B: slope)

Y X A B

(After geolocation co

pixels removal)

Corn VWC Landsat-derived NDWI1640 7.88 0.58

Corn VWC MODIS-derived NDWI1640 9.44 1.37

Corn VWC MODIS-derived NDWI2130 6.67 0.10

Corn VWC Landsat-derived NDVI 13.18 �7.47

Corn VWC MODIS-derived NDVI 13.79 �7.07

Soybeans VWC MODIS-derived NDWI1640 1.78 0.28

Soybeans VWC MODIS-derived NDVI 2.06 �0.86
species. The same comparisons were conducted for NDWIs.

Relationships between SWIR-based NDWIs and VWC were

developed and evaluated.

3.1. Comparison of field-averaged MODIS and Landsat

reflectance and VI data

In Chen et al. (2003) and Jackson et al. (2004), Landsat

pixel values located close to ground sampling sites were

related to VWC. MODIS spatial resolution (250–500 m) is

quite different from Landsat (30 m) and, therefore, this type

of comparison may not be reliable. The basis of analysis in

this section will be field averages computed by averaging all

ground samples in a field and comparing them to the

average of all MODIS pixels in the same field. Character-

istics of MODIS and Landsat reflectance and VIs are

compared.

Since there were more MODIS data sets than Landsat,

the limited Landsat reflectance images were interpolated

(cubic polynomial) between dates to generate images for

MODIS coverage dates. A maximum value compositing

(MVC) may be a useful alternative but the rapid crop

growth makes the interpolation method a better choice.

Geometric correction, as described previously, was per-

formed for each of these dates. Fig. 5 is a plot of the field-

averaged values derived from the Landsat and MODIS data.

Fig. 5a shows the reflectance values for the individual

corn fields. The MODIS-derived NIR (858 nm) and SWIR

(1640 nm) reflectance values tend to be higher than Landsat
es in SMEX02 (R2: coefficient of determination; r: root-mean-square error;

R2 r A B R2

rrection and mixed (Before geolocation correction and mixed

pixels removal)

0.84 0.46 – – –

0.74 0.58 9.12 1.33 0.62

0.72 0.65 5.66 0.51 0.60

0.72 0.60 – – –

0.78 0.53 10.89 �4.81 0.66

0.52 0.16 1.48 0.31 0.40

0.46 0.22 2.06 �0.86 0.46
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Fig. 5. Comparison of Landsat TM/ETM- and MODIS-derived field-

averaged reflectance and NDWI1640: (a) NIR and SWIR for corn; (b) NIR

and SWIR for soybeans; (c) NDWI1640 for corn and soybeans.
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Fig. 6. Temporal variations of regional-averaged surface reflectance for

different bands: a) Corn; b) Soybeans. (L: Landsat TM/ETM bands in solid

lines; M: MODIS bands in dot lines.)
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values. This could result in a 6% reduction in the MODIS-

derived NDVI and an approximately 10% reduction in the

MODIS-derived NDWI1640 (See Fig. 8a). For soybeans, the

Landsat- and MODIS-derived NIR and SWIR reflectance
values match each other on most days. Overall in Fig. 5c,

we observed very good correlations of the NDWIs derived

from the two satellites for soybeans but for corn the Landsat

values were biased high, for high values of NDWI. This

result could be associated with spatial scale or bandwidth

differences of the two sensors.

Further analysis was conducted using regional averages

computed by averaging all corn or soybean field values

derived above. Insights on the potential of various bands

and indices are possible by analyzing this data. Temporal

variations of surface reflectance are compared in Fig. 6 for

the Red, NIR and SWIR bands on two satellites (MODIS

bands 1, 2, 5, 6, 7 and Landsat bands 3, 4, 5). Cubic

polynomial regression trendlines are also plotted. The

differences between MODIS and Landsat at the field scale

we noted above are confirmed here.

The Landsat-derived surface reflectance curves in Fig. 6

exhibit smooth temporal patterns. Deviations are seen in the

MODIS data. Such phenomenon is attributable to the

persistence of cloud/shadow effects in some pixels on

unclear dates and the resolution and bandwidth difference of
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Fig. 8. Landsat TM/ETM- and MODIS-derived regional-averaged NDVI

andNDWI1640 after interpolation andminimumdeviation correction: a) Corn

(NDWI1640(Landsat)=1.063*NDWI1640(MODIS)+0.086; NDVI(Land-

sat) = 1.011*NDVI(MODIS)�0.034); b) Soybeans (NDWI1640(Land-

sat) = 0.962 *NDWI1640(MODIS)�0.022; NDVI(Landsat)= 1.063*

NDVI(MODIS)�0.124).
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MODIS sensors compared to Landsat sensors. However, the

curves for VIs shown in Fig. 8 are smooth for both satellites.

This reduction in variability for the MODIS indices might

indicate that the source of variation observed in the

reflectance data is present in all bands and is normalized

in computing the VI.

3.2. Responses of the spectral bands to vegetation growth

Results presented in Zarco-Tejada et al. (2003) and

Ceccato et al. (2002a) using the PROSPECT model

suggested that the surface reflectance in the reflective

infrared bands (700–3000 nm) is affected by Chlorophyll,

dry matter and leaf structure, in addition to vegetation water

content. Soil effects can also contribute to the surface

reflectance, especially for sparsely vegetated area. There-

fore, it is of interest to see if there are any distinct patterns in

these bands as the crops grow.

In Fig. 6, both the Landsat and the MODIS data showed

clear temporal trends of surface reflectance for different

bands. During the vegetation growing period, the NIR (858

nm) bands increase, but values for the SWIR bands

decrease, which is a clear indication of strong water

absorption. The RED (648 nm) also decreases due to its

correlation with vegetation pigment, dry biomass and leaf

structure.

Since crop coverage measurements were available from

SMEX02, a simple mixture model was employed to remove

the soil effect and achieve a Fpure_ vegetation reflectance as

if the pixel was fully covered by the crops (Jasinski, 1996;

Townshend et al., 2000). Fig. 7 shows the averaged

gradients for linear relationships between reflectance and

time for the period (DOY160-189) before and after the soil

effect correction for both MODIS and Landsat. The results

show that the two satellites agree for the NIR (858 nm) and

the SWIR (1640 nm). In Fig. 7, the gradient of the NIR

(1240 nm) and the SWIR bands departed show more

sensitivity to VWC once the soil effect was removed, this
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Fig. 7. Comparisons of the gradient of the linear temporal variation part

(DOY160–189) of the reflectance from each band before and after soil

effect correction (SMEX02, corn).
demonstrates that the NIR (124 nm) and SWIR bands

respond to vegetation growth more well under full vegetated

conditions, which agrees with Gao (1996) about the NIR

(1240 nm).

In order to apply the NIR (1240 nm) and SWIR bands for

VWC estimation in partially vegetated areas some knowl-

edge of the vegetation coverage is needed to account for soil

effects. In practice, vegetation coverage information is not

easy to obtain, which makes VWC estimation difficult.

Although vegetation index bands combination is believed to

effectively reduce leaf structural effect, however, the other

effects from dry matter and soil background contamination

may persist. In such cases, the SWIR bands which are more

water absorption dominated may be more potentially useful

for VWC estimation minimizing other effects. Further

scientific studies are necessary to examine the extent of

the utilization of the NIR (1240 nm) in VWC estimation.
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3.3. Saturation in MODIS-derived VIs

As discussed in Chen et al. (2003) and Jackson et al.

(2004), the Landsat NDWI1640 lagged the NDVI in corn

fields by one week in SMEX02. However, that analysis only

used data through DOY198. In the present study, MODIS

data through DOY220 were available, which allowed the

examination of saturation for an extended period for corn

and soybeans. Fig. 8a shows that the MODIS-derived NDVI

and NDWI for corn saturated between DOY198 and

DOY220. For soybeans fields, saturation did not occur

during the Landsat analysis. As shown in Fig. 8b, using the

MODIS data, saturation for the NDVI occurred near

DOY202 and for the NDWIs near DOY212, a lag of about

10 days between the two types of VIs. This demonstrated

that the saturation occurred to both corn and soybeans, but

at different times.
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Fig. 9. VWC estimation for corn: (a) Linear VWC estimation using Landsat TM/E

NDWI1640; (c) Linear VWC estimation using MODIS-derived NDWI2130; (d) No
3.4. Evaluation of VI candidates for corn VWC estimation

Ground observations of VWC collected during SMEX02

are used here to evaluate the potential applications of

satellite remotely sensed reflectance for VWC estimation.

For all sample fields, cubic polynomial data interpolation

was used with data from days with VIs to estimate values on

all dates with ground observations. A systematic evaluation

is conducted for each of the 7 bands. The first step in this

process was the examination of the relationship between

VWC and reflectance for each band. Although there are

many alternative nonlinear models that might be used, based

upon preliminary studies and for the purposes of simplifi-

cation, we chose to use a linear model as our basis of

comparison for the various band combinations. This may

not apply to the entire growth cycle, however, a linear

relationship between VWC and NDWI was found to be
-0.2 -0.1 0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

6

MODIS-derived NDWI(1640)

V
W

C
 (

kg
/m

2 )

VWC = 9.44 * NDWI(1640) + 1.37 (R2 = 0.74)
6 stations in DOY 166-169
6 stations in DOY 178-189
other stations in DOY 178-189

(b) 

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

1

2

3

4

5

6

Landsat-derived NDVI

V
W

C
 (

kg
/m

)

Non-linear model from Jackson et al.2004
6 stations in DOY 166-169
6 stations in DOY 178-189
other stations in DOY 178-189

VWC=-17.75NDVI5+75.71NDVI4

-73.46NDVI3+25.42NDVI2-0.83NDVI-0.37

) 

TM-derived NDWI1640; (b) Linear VWC estimation using MODIS-derived

n-Linear VWC estimation using Landsat TM/ETM-derived NDVI.



-0.2 -0.1 0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

1.2

MODIS-derived NDWI(1640)

V
W

C
 (

kg
/m

2 )

VWC = 1.78 * NDWI(1640) + 0.28 (R2 = 0.52)
6 stations in DOY 166-170
6 stations in DOY 178-190
other stations in DOY 178-189

Fig. 10. VWC estimation for soybeans: Linear VWC estimation using

NDWI1640.

D. Chen et al. / Remote Sensing of Environment 98 (2005) 225–236234
applicable in Chen et al. (2003) and Jackson et al. (2004) for

the periods between DOY155 and DOY189. Saturation was

observed at a later stage of this period for NDVI but with

one-week lag in the case of NDWI. Here we used only this

linear period.

Further examination of the R2 values in Table 1 results in

several interesting observations. First of all, the 7 bands are

grouped together into three categories: VIS, NIR and SWIR.

& Inter-category combinations yield low R2 values gen-

erally in each of the VIS, NIR and SWIR categories.

& Cross-category combination between VIS and SWIR also

yields low R2.

& The combinations with the NIR (858 nm) band have

resulted into high R2 (>0.7) of 0.73, 0.78, 0.74 and 0.72

with VIS bands (555 and 648 nm) and SWIR bands

(1640 and 2130 nm) respectively. These combinations

seem to be the best candidates for VWC estimation and

they are indeed the previously discussed NDVIs and

NDWIs.

In fact, there are similarities within in each category. For

example, the saturation phenomenon of NDVI648 (or simply

NDVI as in Eq. (3)) is also observed for NDVI555. It is also

expected that the similarity that exists in NDWI1640 is also

observed in NDWI2130. Based on the above observations,

the NDVIs and the NDWIs are the combinations with the

highest correlation of corn VWC. Finally, the advantage of

NDWI1640 is justified by the fact that the saturation at the

end of the corn growth occurred one week later than NDVI

(Chen et al., 2003; Jackson et al., 2004). For VWC

estimation, the SWIR bands appear to be most useful. The

NIR bands are complementary to it. For example, the NIR

(858 nm) band is a good reference for VIs because the two

best VIs (NDVI and NDWI) are based on it.

The above discussions are purely based on corn VWC

data. Since the soybean VWC is much lower than corn

VWC, the satellite VIs are not sensitive enough to show the

performance of different band combinations so it will not be

discussed further.

3.5. VWC estimation using VIs

Relationships between the VIs and VWC were developed

and then evaluated by plotting VI and VWC data in Figs. 9

and 10. Also shown in these plots are the linear regression

lines. The R2 values and other variables of linear regression

equations used for VWC estimation with the VIs are listed

in Table 2. The results are in general agreement with those

reported in Chen et al. (2003) and Jackson et al. (2004). The

Landsat-derived NDWI achieved the highest correlation

coefficient R2=0.84 and the smallest root-mean-square error

0.46 kg/m2. The root-mean-square errors of the MODIS-

derived NDWI1640 and NDWI2130 are 0.58 and 0.65 kg/m2

respectively, which are approximately 10% of the observed

VWC range (5.5 kg/m2).
These results confirm that using the MODIS-derived

NDWIs to estimate VWC will have slightly lower but

comparable accuracy to using Landsat-derived VIs for corn.

It was noted that the MODIS-derived NDVI appeared to be

slightly better than the Landsat-derived (0.78 versus 0.72 in

R2 values). In reviewing the NDVI data (Fig. 9d), it appears

that this may be associated with nonlinearity in the

relationship between these variables. Based solely on root-

mean-square errors the NDVI also performed well. But

because of the saturation at high VWC (Fig. 9d) the

conclusion from Chen et al. (2003) and Jackson et al. (2004)

on the superiority of the NDWI over the NDVI remains

valid.

As shown in Fig. 10 for soybeans, the VWC values are

much lower, typically in the range of 0 to 1.3 kg/m2. These

results are consistent to those of Chen et al. (2003) and

Jackson et al. (2004).
4. Discussion and conclusions

This study using MODIS data has explored the possible

use of MODIS reflectance data for the estimation of VWC.

Using corn and soybeans, vegetation indices (NDVI,

NDWIs) were derived from MODIS and Landsat over the

Walnut Creek watershed in Iowa, USA during the SMEX02

study (mid-June to mid-July, 2002). Red, NIR and SWIR

bands were used for VIs calculations.

MODIS images were processed before VI calculations.

This included refined geolocation correction using available

Landsat images. Fields with mixed pixels were identified

and excluded in VI calculations using a technique developed

here. For practical studies using coarse resolution data,

mixed pixels could be eliminated to accord with accuracy

estimation requirements. This resulted in an improvement in

the temporal variation of the VI. After comparing the

MODIS spatial resolution to the general spatial scale of

fields in the study area, it was noted that the field-averaged
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results would be more reliable if each individual crop site

was larger. This is a drawback of MODIS in applications

involving small or medium sized fields.

Although some variability was observed in the temporal

patterns of individual MODIS bands, these seemed to be

cancelled in computing the VIs as bands were combined.

MODIS-derived VIs displayed smooth temporal variations

that were comparable to the Landsat results. Although

MODIS has a coarser resolution, these results show the

potential for using MODIS data and since it is available

much more frequently it may have wider application.

Although MODIS and Landsat agree with each other

over the soybeans fields, MODIS observed higher surface

reflectance in all spectral bands than Landsat over the

cornfields. This may be due to the difference in their sensor

bandwidths. The sensitivity of sensor difference to the crop

species difference is under investigation.

The saturation of the NDVI and NDWI as corn matures

was confirmed from previous studies (Chen et al., 2003;

Jackson et al., 2004). A lag of one week for corn NDWI was

observed as was a 10 day lag for soybeans. The SWIR-

based VIs were found to track the growth pattern better than

others.

A simple linear mixture model was used to remove the

soil effect and the NIR (1240 nm) and SWIR bands

responded to VWC changes for ‘‘pure’’ vegetated area more

convincingly. However, obtaining the necessary vegetation

coverage information may be impractical. This result

suggests that effect from soil background and other

vegetation constituents such as dry matter and vegetation

structure may limit the ability of those bands for corn VWC

estimation. The changes of SWIR (1640 and 2130 nm) were

demonstrated to be more strongly related to corn VWC even

when soil and other effects exist in addition to vegetation

index bands combination mechanism. It was concluded that

SWIR bands in the water absorption spectral range as the

measuring bands in vegetation indices are useful for corn

VWC estimation from operational satellites, as the comple-

ments to conventional NDVI.

The availability of ground-based VWC measurements

from the SMEX02 made it possible to develop and verify

relationships between VIs and VWC. All possible combi-

nations of the 7 MODIS bands have been used to construct

vegetation indices, which were evaluated by comparing

correlation coefficients with the corn VWC. It was found

that NDVIs and NDWIs have the highest correlations and

thus are the best candidate VIs for corn VWC estimation.

For linear regressions between corn VWC (0–6.0 kg/m2)

and the SWIR-based VIs, the R2 values were 0.84, 0.74 and

0.72 for Landsat-derived NDWI1640, MODIS-derived

NDWI1640 and NDWI2130 respectively. However, linear

relationships were not as strong for soybeans, which had

relatively low VWC levels (0–1.5 kg/m2).

This study has demonstrated that VWC can be retrieved

using MODIS data for the crops and regions examined. This

is a positive step towards the development of more robust
techniques based upon a data source that is globally

available on a routine basis.
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